Improved deconvolution of very weak confocal signals
نویسندگان
چکیده
Deconvolution is typically used to sharpen fluorescence images, but when the signal-to-noise ratio is low, the primary benefit is reduced noise and a smoother appearance of the fluorescent structures. 3D time-lapse (4D) confocal image sets can be improved by deconvolution. However, when the confocal signals are very weak, the popular Huygens deconvolution software erases fluorescent structures that are clearly visible in the raw data. We find that this problem can be avoided by prefiltering the optical sections with a Gaussian blur. Analysis of real and simulated data indicates that the Gaussian blur prefilter preserves meaningful signals while enabling removal of background noise. This approach is very simple, and it allows Huygens to be used with 4D imaging conditions that minimize photodamage.
منابع مشابه
Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution
The early fault characteristics of rolling element bearings carried by vibration signals are quite weak because the signals are generally masked by heavy background noise. To extract the weak fault characteristics of bearings from the signals, an improved spectral kurtosis (SK) method is proposed based on maximum correlated kurtosis deconvolution (MCKD). The proposed method combines the ability...
متن کاملImage restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ.
Deconvolution algorithms have proven very effective in conventional (wide-field) fluorescence microscopy. Their application to confocal microscopy is hampered, in biological experiments, by the presence of important levels of noise in the images and by the lack of a precise knowledge of the point spread function (PSF) of the system. We investigate the application of wavelet-based processing too...
متن کاملAn evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis.
The ability to visualize cell motility occurring deep in the context of opaque tissues will allow many currently intractable issues in developmental biology and organogenesis to be addressed. In this study, we compare two-photon excitation with laser scanning confocal and conventional digital deconvolution fluorescence microscopy, using the same optical configuration, for their ability to resol...
متن کاملThree-dimensional imaging by deconvolution microscopy.
Deconvolution is a computational method used to reduce out-of-focus fluorescence in three-dimensional (3D) microscope images. It can be applied in principle to any type of microscope image but has most often been used to improve images from conventional fluorescence microscopes. Compared to other forms of 3D light microscopy, like confocal microscopy, the advantage of deconvolution microscopy i...
متن کاملPSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions
Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...
متن کامل